
DJAC FILE COPY ~-*

1 -:hnicAl Report 995 •2 1

An O(N) Algorithm for
Three-dimensional

N-body Simulations

Feng Zhao

MIT Artificial Intelligence Laboratory

DTIC
ELECTE
JUN 13198U

H

Airproved fcff public release,7

UNC LASS I F I ED
S .o.-:_. ASS. r -A r, :)r ,i _I$ AGE WIo,,0..Enfe'.dl

REPOT DOUMENATIO PAG 1.EAD INSTRUCTIONS
ABEFORE COMPLETING FORM

REO ' R u- N EU 2. GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG HUMER
99.5 '/

4 T(T E S btlew.) S. TYPE OF REPORT I PERIOD COvEREO

An 0(N) Algorithm for Three-dimensional N-body TR

Simulations
s PERFORMING ORG. REPORT NUMSER

7 AUT 1.ORf.) a. CONTRACT OR GRANT NUMIER(.)

Feng Zhao N00014-86-K-0180

9 PERrORMING ORGANIZATION NAME ANO ADDRESS I0. PROGRAM ELEMENT PROJECT, TASK

Artificial Intelligence Laboratory AREA A WORK UNIT NUMERS

545 Technology Square

Cambridge, MA 02139

11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advance.d Research Projects Agency October, 1987

* 1400 Wilson Blvd. I). NUUE" OF PAGES

Arlington, VA 22209 64

14 MONITORING AGENCY NAME A ADORESS(If dilfeent Irm C ,,felfnhd Oflce) IS. SECURITY CLASS. (f th.le repol)

Office of Naval Research UNCLASSIFIED .4-

Information Systems %

Arlington, VA 22217 IS. OECLASSIICATION/OOWNGRA ING 0SCHEDULE

16 OISTRIOUTION STATEMENT (of thie Report)

Distribution is unlimited.

17. DISTRIUUTION STATEMENT (of tHe aberact fetred In Stock 20, II dIlIrent tvem Ropovrf)

It SUPPLEMENTARY NOTES

None

*9, KEY WORDS (Conlinue on reveVeo old. It nocoeeIF md Id"111y 11, b1ec0
,

nhm1e)

N-body algorithm, particle simulation, Multipole expansion, 3-D tree,

spatial refinement, parallel computing

20 AISTRACT (ConDmwe an reee efe I1 neceemy md IEentify by block I M)

We develop an 0(N) algorithm that computes the gravitational potentials

and forces on N point-masses interacting in three-dimensional space. In contrast

to other fast N-body methods such as tree codes, which only approximate the

interaction potentials and forces, this method is exact -- it computes the

potentials and forces to within any prespecified tolerance up to machine

precision. We present an implementation of the algorithm for a sequential

machine and numerically verify the algorithm. We also describe a parallel -

•%
DO 1473 EDITION O 1 NOV 65 IS OISOLETE UNCLASSIFIED

S/N 002-014-60 ' "L0I

SECURITY CLASSIFICATION OF TNIS PAGE (Wh n Dee Enfoeeve

VV %

UW WVW~WI1J L x-trt' rw ' - 'I ' 'rtyl - W %n W, ,i - -

20. version of the algorithm that runs on the Connection Machine in order 0(logN)

time.

-- U

4%%

1%N
I

AeSin o

NTS PAP

DTC.i

Accssihon Fo

NTIS ttilt Codes

Distri pe i a/

%' a~o

.4 &
S -

An O(N) Algorithm -p

for Three-dimensional N-body
Simulations

by

Feng Zhao

Submitted to the Department of Electrical Engineering and Computer
Science on October 2, 1987 in partial fulfillment of the requirements

for the Degree of Master of Science in
Electrical Engineering and Computer Science

. - Abstract S
"- -

We-develep an algorithm that computes the gravitational potentials and
forces on N point-masses interacting in three-dimensional space. The algo- C) i
rithm, based on analytical techniques developed by Rokhlin and Greengard,
runs in order N time. In contrast to other fast N-body methods such as
tree codes, which only approximate the interaction potentials and forces,
this method is exact-it computes the potentials and forces to, within any ,
prespecified tolerance up to machine precision. W*?re4et 0 implementa-
tion of the algorithm for a sequential machine. We n iefcally v the

- algorithm, and compare its speed with that of an D4 f&' direct force com-
putation.'-We also describeqa parallel version of the algorithm that runs on
the Connection Machine in order O(log N) time. We compare, experimen- --
tal results with those of the sequential implementation and discussthow to ,

minimize communication overhead on the parallel machine.

Keywords: N-body algorithm,-particle simulation,.Multipole expansion, 3-D
tree, spatial refinement, paralkr computing

Thesis Supervisor: Harold Abelson
Title: Associate Professor of Computer Science and Engineering %

Thesis Supervisor: Gerald Jay Sussman .

Title: Professor of Electrical Engineering i "

J T131988

Approved for public rele=*;

*

0

fr

'-A

-a.

S

I.

.. ~

* 0

~. .~
* p

To my Father and Mother

S

S.
S

-a
bY

1
.

V
* S

*1~

1%~

* S
a,.

l.a ...
'a.

a,.
a. ~

'a-
a... -a
-'a. (

* 0

* 5
-r

4

~ - *

*

Acknowledgments

I would like to thank the many people who have contributed to the prepa-
ration of this thesis.

Hal Abelson and Gerry Sussman, my thesis advisors, have provided en-
couragement and support throughout the course of this research. Gerry
deserves thanks for getting me started on the problem and for pointing out
what is obvious and what is not. Hal has offered excellent critique of my
writing and has improved the clarity of many ideas in the thesis. I have
benefited a great deal from inspiring discussions with Hal and Gerry We.

led to the development of this thesis.
Many people in the MAC research group at MIT have provided helpful

-- comments and assistance. Professor Jacob Katzenelson from Technion-
0 Israel Institute of Technology-read and commented on early versions of the

thesis. Franklyn Turbak has been a major source of help, and has spent hours
and hours helping me prepare the final draft of this thesis. Mark Sheldon
has provided help with typesetting problems. Andy Berlin and Ken Yip have
provided constructive criticism.

I thank Thinking Machines Corporation for providing research facilities
for my experimental work. Special thanks are to Danny Hillis, Lennart Johns-

son, Alan Ruttenberg, and Luis Ortiz.
I thank Vicki Ledet and Craig Withers for their constant belief in me,

and Jane Poet for helping me spiritually maintain an active life.

This thesis would never have been completed without the moral support
and love from my family.

This thesis describes research done at the Artificial Intelligence Laboratory
* and the Laboratory for Computer Science at the Massachusetts Institute of

Technology, supported by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-86-

K-0180.

*v 0

-- - -- -

Contents

1 Introduction 1

2 The N-body Algorithm in 2-D 4
2.1 The Multipole Expansion Method................... 4
2.2 Description of the Algorithm. 6
2.3 Remarks 9

V3 A 3-D N-body algorithm 11
3.1 The Multipole Expansion in 3-D 12
3.2 Theorems 13
3.3 A Sequential Algorithm 27

4 Numerical Verifications 32
4.1 A Sequential Implementation 32

4.1.1 3-D Tree Data Structure 32
4.1.2 Implementation Details. 33

4.2 Experimental Verifications 35
4.2.1 Accuracy of the Algorithm............35
4.2.2 Running Time of the Algorithm 40

*4.3 Discussion 43

5 A Parallel Algorithm 45
5.1 Introduction 45
5.2 Why a Parallel Computer?2 . 46
5.3 3-D) Tree on the Parallel Computer 47
5.4 A Parallel Algorithm 48

'U.5.5 Experimental Results 51

0U.
I

*N %

CONTENTS v

5.6 Communication Patterns 53
5.6.1 Reducing Communication Bottlenecks 54
5.6.2 Localizing Communication 54

5.6.3 Combining and Delegating Messages 54
5.7 Discussion 57

5.7.1 Grid Representation 57
5.7.2 Exploiting Regularities 59

5.8 Conclusion 61

k _

%

0

N.

*.- -

%
,'..--

,;List of Figures

i%

< 2.1 Decomposition in a two-dimensional space 7 ,
9. .2 Near-field, far-field, and interactive-field 8

- 3.1 Gravitational field 13
•3.2 Lem m a 3.2.1 21
.:3.3 Lem m a 3.2.2 23

•-"3.4 Lemma 3.2.3 ... 26
3.5 Decomposition in a three-dimensional space 28

-' "3.6 A sequential algorithm 30

2. Na-felfa-fedan .ntratvefi.....................8

3.7 A sequential algorithm (con't) 31

4.1Iniialconfiguration oftePythagorean configuration o he3.2 bodies .. 36

4.2 Plot of the accuracy test for the Pythagorean configuration ofthree b3des L .2.................................... 38
4.3 Initial configuration of two Plummer systems 4

4.4 Running time growth rate of the Multipole-expansion algorithm 42

w4, 5.1 A parallel algorithm 49
5.2 A parallel algorithm (con't) 50

5.3 Running time growth rate of the parallel algorith 52
% 5.4 Concurrent write 55

5.5 Combining messages 56
5.6 Delegating messages 56

k 5.7 Superimposed mapping 58
* 5.8 Non-superimposed mapping 58

5.9 Classification of squares. 60
* . 5.10 Symmetric communication pattern 60

* vi
W. 4

,..-4e-

List of Tables

S

4.1 Accuracy test for the Pythagorean configuration of three bodies 37
4.2 Accuracy test for the uniform model 40
4.3 Accuracy test for the Plummer model 41
4.4 Speed test for the Multipole-expansion algorithm 42

5.1 Experimental results on the Connection Machine 52

.. ',

vii

vii S-

-. ?-

Chapter 1

Introduction

Numerical simulations of N-body interactions are extremely important in
-. astrophysics, plasma physics, fluid dynamics, and molecular dynamics. To

accomplish such a simulation by directly evaluating the interaction potentials
requires computation time on the order of O(N2), which is prohibitively
expensive for large N. Consequently, there have been many efforts to develop

algorithms whose complexity grows more slowly [Lec72]. These algorithms
all make assumptions about the distribution of particles to approximate the
interaction potentials, and thus are applicable only to certain classes of N-
body interactions.

The best-known "fast" algorithm is the tree-code [App85], which uses a
tree-like data structure to form hierarchical clusters of particles. The algo-
rithm approximates the force exerted by a cluster on a distant particle as
the force exerted by an equivalent mass located the cluster's center of mass.
The overall computational complexity of this algorithm is believed to be
O(N log N). However, the force approximations are effective when the par-
ticle distribution is relatively nonuniform, and there are no known a priori
estimates of the accuracy of these approximations, although methods have

"-' been developed for use in practice [Por85] [BH86].
Rokhlin and Greengard [GR861 discovered an N-body algorithm with

complexity O(N). The algorithm separates the computation of the far-field
potentials from that of the near-field potentials, and expands the far-field
potentials into Taylor series. Signincantly, given a required precision c, one
can determine in advance how many terms must be retained in the Taylor se-
ries expansions, and thus one can control the accuracy of the approximation.

. y

-IN I'0 S

CHAPTER 1. INTRODUCTION "2

Rokhlin and Greengard's approach relies heavily upon analytical techniques
to develop the series expansions, to derive error estimates, and to shift se-
ries expansions between coordinate frames. For the N-body problem in two
dimensions, this analysis is greatly simplified by modeling two-dimensional

variable.
This thesis applies Rokhlin and Greengard's idea to develop an O(N)

algorithm for the three-dimensional N-body problem. Although there is
no direct analogue of complex analysis in three dimensions, we are able to

*exploit the harmonic nature of the gravitational potential in order to produce
suitable series expansions. We implement the algorithm and experimentally
verify its accuracy and its linear growth. We also implement a parallel version
of the algorithm and present experimental results.

V Chapter 2 of the thesis reviews Rokhlin and Greengard's algorithm and
their use of complex variables for the two-dimensional problem and points
out difficulties in applying the method in three dimensions.-.'- Chapter 3 develops a three-dimensional analogue of Rokhlin and Green-

gard's method. The basic idea is to expand the potentials in terms of spher-
ical harmonics. The analytical basis of the algorithm includes two theorems
that derive the required expansions and give bounds on the error terms.
There are also three lemmas that describe how to shift these expansions from
one origin to another. Using these analytical results, we present a sequential
algorithm in three-dimensions. Independently of this work, a similar exten-ii sion of Rokhlin and Greengard's method has been carried out by Greengard
[Gre87]. His technique differs from ours in that he uses expansions in polar
coordinates and we work in Cartesian coordinates.

€ 1, Chapter 4 concerns numerical verifications of the three-dimensionai al-
gorithm. We first describe a sequential implementation of the algorithm.
We discuss our choice of a tree-shaped data structure and describe heuris-

* tic methods for increasing the efficiency of the implementation. We then
., present experimental results to demonstrate that the algorithm does have

linear growth and does compute the forces and potentials to within any pre-
specified tolerance up to machine precision. We compare the speed of the
algorithm with that of an O(N) direct force computation. For a required

S average accuracy of 10' for potential fields, our algorithm will be faster than
the direct force computation when there are more than 1,000 particles.

Chapter 5 presents an extremely fast implementation of the N-body

9%

a-'-

.:: ~r r .N

CHAPTER 1. INTRODUCTION 3

code-a parallel implementation of the algorithm, which runs in O(log N)
time, implemented on the Connection Machine. We compare the experi-
mental results with that of the sequential implementation and find that the

*! parallel algorithm has a speed-up of 10 for N = 1,000 and a speed-up of 100 .
for N = 10,000. For a large parallel machine, interprocessor communica-
tion is often the bottleneck of the computation. By exploiting regularity and
locality in communication patterns, by combining and delegating messages, -p

we demonstrate how to minimize communication overhead due to message -

congestion. 5

Throughout this thesis, if not specified otherwise, N will always refer to
the total number of particles in a simulation, and p will always refer to the
highest degree of harmonics retained in an expansion.

" S

-2'-

.ft.%

'-ft..,..

-ft.
p.,,-v.,:''.. . . --. .'.", .% V:' : ... ':''''. :, , ,,.. :::c .''":.. . :' ' - : , :z? % . X ':

Chapter 2

The N-body Algorithm in Two
Dimensions

This chapter follows the presentation of the two-dimensional algorithm given
by Rokhlin and Greengard in [GR86]. We review the major theorems and
give a heuristic description of the algorithm. The key idea is to use complex
analysis to produce a series expansion of the potentials.

2.1 The Multipole Expansion Method

In the two-dimensional N-body problem, we consider point charges and
Coulombic forces. For a charge q located at the point y = (y1, y2) E R2,
the potential at a point x = (X1, x 2) is q log 11 x - y 1I. If we identify R2 with
the complex plane C' via (xI, x 2) - x 1 + ix 2 , we can consider the potential
to be the real part of the analytic function Oy : C1 --+ C'

0,(x) =q log(x - y).

We can expand 0,(x) in a Taylor series that converges for any x with

1Xl > lyl:

0 0,~C(x) = qlog(x -y)=q Iog(X) +log I- =q Ilog(x)- OW
k=1

If we retain only p terms of the expansion, the error is bounded:

4

Z.'

%L~ .1.

CHAPTER 2. THE N-BODY ALGORITHM IN 2-D 5
0

" I / Is "

k-1- 11

This observation leads to the following multipole expansion: Given an
ensemble of m charges {q(), i = 1,...,m} located at points {y(ii = 1...,m},
with ly(i)l _ r0 , the potential Oy(,)(x) at any point x E C' due to the charge
q(i) at y('), with lxi > r0 , is

"I""€,, (i) (lgx - l (VxI.--"

= log(x) - , i = 1, ... ,m. (2.1)[k x
• The total potential at the point x E C' due to all the charges, therefore, is

O(X) = Y() (X) =Q log(x) + E k7 (2.2)
_ ..

i=1 k-1 X

where

5. Q= q() and a=0Z
q=1 i-- k

Moreover, for any p > 1,

.'~I/ 1(P ak A r~o P+1

OWX 1- QXo~)-E

where

0A.: , A = q(1)l.

In particular, if Iro/xI < 1/2, we have

"" ¢(W - Q log(x) - a <2AI
E- 2-'"" k=1

* 0

CHAPTER 2. THE N-BODY ALGORITHM IN 2-D 6-

To obtain an approximation accurate to within a given precision e, it suffices
to retain only the first p terms in the multipole expansion (2.2) and to take
p to be of the order L- log 2 J.

The ability to sum individual expansions of (2.1) to obtain the multipole
expansion of (2.2) depends on the fact that these expansions {5,(,)(x),i =

1, ...,m} have a common reference point and a common region of conver-
gence. If they don't, we need to shift the series {i)(x),i = 1,...,ni} to
a common reference point. Also, to insure that all the shifted series have
a common region of convergence, we may need to "flip" a series so that its
region of convergence lies inside a disk, rather than outside a disk. Rokhlin
and Greengard [GR86] derive shifting and flipping lemmas that describe how
to perform these operations in time independent of the total number of par-
ticles. These lemmas allow us to manipulate the multipole expansions in a
manner required by the following fast algorithm.

2.2 Description of the Algorithm

Rokhlin and Greengard's O(N) algorithm computes separately the potentials
of close-by particles ("near-field potentials") and the potentials of far-away
particles ("far-field potentials"). The near-field potentials are computed us-
ing direct evaluation. If the number of particles near any given particle is
bounded by a small constant, that is, if the distribution of particles is rela-
tively uniform, then the work required to compute the near-field potential at
this particle is of order 0(1). The far-field potential is obtained by evaluat-
ing the p-term multipole expansion described above at the particle position,
which takes constant number of operations for a prespecified p. The com-
putation is organized so that the total amount of work for computing the
potentials at all the N particles is of order O(N).

More precisely, the two-dimensional space under consideration is regarded
as a square (Figure 2.1). It is divided into four subsquares, and each of which
is then recursively subdivided into four sub-subsquares, and so on. This de-

* composition is represented using a tree-like data structure in which each
square is represented by a node. A square at level 1 of the tree has four child

- . nodes that represent the subsquares at level I + 1. This recursive decompo-
sition is continued until there are only several particles in a square at finest

g%

* 0

00

1 4

02
2 3 1+1

level 1 level 1+1

Figure 2.1: Decomposition in a two-dimensional space, with the corresponding
data structure

grain. Under the assumption that the particles are uniformly distributed',
the level of the tree n, i.e., the level of the decomposition, is usually chosen
as about [log 4 NJ. Therefore each square at the finest level has in average
one or two particle in it.

We define for a square its near-field, far-field, and interactive-field. The
near-field of a square consists of those neighboring squares that are at the
same level of decomposition as the square. In Figure 2.2, the squares labeled
as B are in the near-field of square A. The far-field of a square is defined to be
the exterior area of its near-field. The interactive-field of a square is the part
of its far-field that is in the near-field of the square's parent. In Figure 2.2,
the squares labeled as A' are in the interactive-field for the square A.

The goal of the computation is to compute the far-field potential expan-
sions at all particle positions with O(N) work. This is achieved by propa-
gating values, first upwards through the tree, then downwards, as follows:

Initially, for each of the squares at the finest level, we compute the p-term
multipole expansion, valid outside the square, for the potential due to the
charges inside the square. The expansion is performed relative to the center
of the square.

'Rokhlin [CGR87] has an O(N) adaptive form of the algorithm which does not depend
for its performance on the particle distributions.

* 0aI.
* %

- -

CHAPTER 2. THE N-BODY ALGORITHM IN 2-D 3

Al A' A' A' A' A'

A' A' B B B A'

A' A' B A B A'

A' A' B B B A'

A' A' A' A' A' A'

A'A' A' A' A' A'

""Figure 2.2: Near-field, far-field, and interactive-field

These expansions are propagated upwards through the tree to produce,
for every square at every level, a multipole expansion for the potential due
to all charges located inside the square. The valid region of convergence for
the multipole expansion is the far-field of the square. To form the multipole
expansion for a square at level 1, we take each of its level-l+ 1 subsquares, shift
their multipole expansions to the center of the level-i square and add them
together. This is done recursively at each level of the tree while propagating
upwards through the tree.

*' The downward-propagation phase of the computation produces, for every
square, a local potential expansion due to its far-field interactions. The
local expansion for a square is a multipole expansion that is valid inside the
square. The computation proceeds recursively. Suppose we already have
a local potential expansion 'p(x) for square A's parent Ap. The local
expansion 0' (x) for the square A is, by the definition of an interactive-field,
the sum of O'Ap(x) and those multipole expansions due to particles in A's
interactive-field. However, O'Ap(x) is relative to the center of Ap. In order
to combine it with other multipole expansions for the square A, we shift

AP(x) to the center of A. We have, from the upward-propagation phase of
Zw. the computation, the multipole expansion OAI(X) for each square A' in A's

ISVV

Mom

*" S

CHAPTER 2. THE N-BODY ALGORITHM IN 2-D 9

interactive-field. In order to combine A'(X), we shift them to the center
of A, and flip regions of convergence so that they have a common reference
point and are valid inside the square A. The sum of the shifted 0' (x) and
'CA'(X) is the local expansion 0' (x) for the square A. This computation is
performed recursively all the way down to the leaves of the tree.

Now we have for every square at the finest decomposition level the local
expansion due to its far-field valid in the square. To get the far-field po-
tential at a given particle, we have only to evaluate the local expansion at
the particle's position. The near-field potential is obtained by evaluating di-
rectly interactions with particles in the near-field. The sum of the near-field

v'. potential and the far-field potential is the desired potential at the particle.
Rokhlin and Greengard [GR86] show that the total work required is

N(ap2 + bp + ck,, + d), where k,, is the upper-bound for the number of par-
tides in a square at the finest level. The key observation in this estimate
is that each shifting or flipping of a p-term multipole expansIon takes O(p 2)
work, and that the number of squares in a given square's interactive-field is

Vt." bounded by 27. The total number of squares at all levels is

4O 44n+41 4 '- 1 4N-1I

3 3

Therefore the upward-propagation phase and the downward-propagation
phase of the algorithm accounts for the p 2 term in the estimate. The initial
expansion step and the final evaluation step in the algorithm is responsible
for the p term, and the direct computation on near-field potentials is for theckn term.

The overall computational complexity of the algorithm, from the above
estimate, is of order O(N).

V -. Rokhlin and Greengard [GR86] also derive that the error estimate in the
5 computation is C(1/2)P+l. Given a precision requirement e, the number of

terms p retained in the expansion is set as L- log 2 EJ.

2.3 Remarks
* 0!

.- The key to the two-dimensional O(N) algorithm is that, for the potential O(x)
due to charges at {y(t), i = 1, m} we evaluate the potential at each of the
points {x J = 1, ,n} by applying the multipole expansion of O(x), rather

* S,'.o

*sff I
"* 0

p .,..-$~y4- - ~ ~ Vt. - - * - V ~ d~ -

CHAPTER 2. THE N-BODY ALGORITHM IN 2-D 10

than by directly evaluating and summing the indi-idual potentials Oy(,(x) at
each x (j). Our ability to apply this method relies on the fact that the Taylor
series expansions of the ¢,) (x){i = 1, ..., m} are absolutely convergent power
series whose coefficients are independent of x. We produce the expansion of
0(r) by summing corresponding coefficients of the expansions Oy(,)(x). In
order to do so, these expansions must have a common reference point and a
common region of validity, or they can be shifted so that they do so.

The applicability of complex-analytic techniques in the two-dimensional
case results from the fact that the two-dimensional potential, viewed as a real-
valued function on R2 , is harmonic, and thus is the real part of a complex-
analytic function on C. In three dimensions, the potential function is likewise
harmonic. Unfortunately, there are no corresponding complex-analytic tech-

niques in three dimensions to simplify the analysis.
* In the next chapter, we will produce expansions of the three-dimensional

potential that are suitable to support the multipole expansion method.

le

Chapter 3I

loihA three-dimensional N-body

We consider now the three-dimensional N-body problem, where the gravita-

tional potential at a point x E R' due to a point mass It located at y E R 3 -.
is

OY(X (3.1)

S1 X -

Coulombic potential due to a point charge q has the same formula, except
that y is replaced by -q [Qo159] [Arn78].

In order to apply the multipole expansion method, we must expand this
potential as an absolutely convergent series whose coefficients are indepen- .
dent of x, and we must produce an a priori bound on the error when weIl
retain only a finite number of terms in the series. We must also be able to
shift the series expansion to a new origin. "-2

The potential function in (3.1) is harmonic in everywhere other than y

* .~/

[Kos64]. This suggests the possibility of expanding ¢y(x) in terms of spherical,,-
harmonics [Hob55].

In this chapter we prove two theorems that derive the required expan- ,
sions and give bounds on the error terms. There are also three lemmas that :
describe how to shift these expansions from one origin to another. Using
these analytical results, we present an analogue of Rokhlin and Greengard's
algorithm in three dimensions.

At the same time the author derived the results (Zha87], Greengard also

.111

CHAPTER 3. A 3-D N-BODY ALGORITHM 12

extended the two-dimensional algorithm to three dimensions [Gre87]. His
.S method is similar to the one given here, but the underlying theorems and ex-

pansions are different. Greengard works in terms of polar coordinates, while
the formulas and derivations here are done in terms of Cartesian coordinates.
rorIn Chapter 4, we present experimental results that demonstrate the er-
ror bound and order-of-growth estimates given here. However, there are no
comparable published experimental results for the polar-coordinate form of 2

-.. the algorithm. It is unknown how the two different forms of the algorithm
compare in practical implementations.q
3.1 The Multipole Expansion in Three Di-

:- mensions

0 Given an ensemble of particle masses fyn),n = 1,...,m} located at points
'2.4* {y(") E R 3,n = 1,...,m}, the gravitational potential at any given point

x E R 3 is

q (X) r(--) (3.2)

Here r =(n x - y(f) 11. We will show how to expand 1/r(n) into an
absolutely convergent series

I(_ E aij)(y(n))ijk(X), n = 1,...,m, (3.3)
wr"n" iijk

where aijk(y(n)) is independent of x and depends only on y(n). This will
enable us to get the multipole expansion for the potential O(x) due to all the
masses {p(I)} by summing together the aijk(y("))'s weighted by the masses

S1), A (2),..., /4(') respectively:

(X) - (n) aj (y(k)) Ejk(X). (3.4)
, i, n=1

- The force field is obtained by taking the gradient of the potential field

F = -VO(x)

0b%

%p. 2

CHAPTER 3. A 3-D N-BODY ALGORITHM 13

~Jyijk n l

The series expansion of (3.5) has the same coefficients as that of (3.4), only
this time, Oik(X) is replaced by O19k,(x). This enables us to use the same
expansion formulas for potentials derived in the next section to compute
multipole expansions for forces.

3.2 Theorems

This section derives necessary formulas for producing and shifting multipole
-'- expansions in three dimensions, together with bounds on the error when

retaining only a finite number of terms in the expansions.

Y i
y r

Fiue3.1: Gravitational field

Figure 3.1 illustrates the quantities needed in our derivation. The poten- "
-tial at point x E R 3 is due to mass y at point y E R 3 . y(0) is the reference

I'..-

NK 0

CHAPTER 3. A 3-D N-BODY ALGORITHM 14 z:

quantities r =11 X - y III ro =11 y - y(O) 11, and R =11 x - y(O)I1 We need the '

following relationships later in deriving the multipole expansion formula. .

From the basic triangle relationship, we have

r = V/R2 + r2 - 2Rro cos -f (3.6)
We derive the following theorem which produces an expansion for 1/r in

a region of analyticity outside a sphere. This is essential in obtaining the _

multipole expansion (3.4). '?.

II

,'. Theorem 3.2.1 Using the quantities as shown in Figure 3.1, if R > ro,
'. that is, if X = (XI,X2,X3) measured relative to y(O) is outside the sphere of ,

uatradius ro centered at y(O), then ane

r -,j.k- 4 (3.7).''v

where i wehv

() , 1 '+j+'O .

aijk• V 1.21,13 (38

r R+r- rco. (3.6) ,

and We, V2, V3 are the direction cosines of y()yr
If we retain only terms of i + + k < p then the error satisfies

tie o 3C (3.9)

where C is independent of p.qaF,

Proof.

In Figure 3.1, the Cartesian coordinate distance between the points x
and y is :,'-j

1 2-u 1

a(x, 1 = [(X0 -)+ 2k))- (-o)] (3.8) ?,

%V
aeon

CHAPTER 3. A 3-D N-BODY ALGORITHM 1

(0
We expand 1/r(x, y) as a Taylor series in powers of (yo - y~) and get

+_ _Y ___ (0)0 _

r(x, y) -r(x, y) L 0~ _ a.!j_~~ r(x, y)f)

(3.11)
The subscript y = y(o) following the brace indicates that after the differenti-
ation is done Y1, Y2, Y3 of point y should be replaced by l Y2O IY of pint
Y".) When x lies outside the sphere of radius ro centered at y(o), the above
Taylor series converges absolutely and uniformly. we make the substtution
y Y(') before the differentiation is performed. Using the identities -

oy, kr(x, y)) Y x, r(x, y))s '

and

r(x, y) y~() R

the Taylor series (3.11) becomes

r(x, y) R a! 0ro OX03 , RI

Let va (Ya - ,3) /ro. Since V1, V2 , V3 are the direction cosines of y(O)y, it

follows that

(3 1' 3 5X,, 0XJk(-3

Substitute this into (3.12), we get

00 ~ jk i+3 +k /1
(-, i+j+k k __

F~i 1/231/3~kO (3.14)

This completes the proof for (3.7).
In order to derive the error bound of (3.9), we will use the fact that 1/r

can be expanded in powers of R using the Legendre Polynomi~als [And85J.

S~jI;%

CHAPTER 3. A 3-D N-BODY ALGORITHM 16

(Z- +P(cos7f) if >
0he_ -R (3.15)

! r- v--P, (Cos -) if #
i a=00

The polynomials P,(x) are called the Legendre Polynomials

Po(x) = 1, Pj(x) = x, P2(x) = (3x2-1),
2

The series of (3.15) is absolutely convergent. Notice that the Legendre
Polynomials P,(cos -f) vary with the directions of the vectors y(°)x and y(O)y,
and thus is a function of the point x at which the potential is to be evaluated,
as well as a function of the mass location y.

Now we can complete the proof of (3.9). Using the notation

JJr

the series of (3.12) becomes

+" ra- (3.16)
r (x, y) t 9r (R) (.6

Notice that there is a term-by-term correspondence between this series and
the series of (3.15). By equating terms, we have

P"(cosy) = (-1)- _.t " (3.17)
* !arc' RJ)

fta+1 49 a 1>--" ': ~r R 0
I NO Surprisingly, only depends on -, not R.

Using the correspondence between (3.16) and (3.15), we have

'+i+k<p ai+j~+k
ij,k 2 3

X S6

4. f .'. a a A I

CHAPTER 3. A 3-D N-BODY ALGORITHM 17

00- %

:E r Pc
= __+ 00I

4 Z R01+1Pco)2 a=p+l

Since the Legendre polynomials have the property of [P,,(cos 7)I 1, the S
error therefore is

'4-,-...4- Rol+' 1 R ro 1 L-P+'

:.. = C .

This completes the proof.

Using the results derived in Theorem 3.2.1, we can produce the multipole
expansion of (3.4) in Section 3.1. As in Section 3.1, suppose that all m
particle masses are located within a spherical region with radius r0 centered
at y(o), that'is, 11 y(") - y(0) 11< ro, n = 1, ...,m, we have from Theorem 3.2.1
the series expansion of 1/r(n) converging for any x with x - y(o) 11> ro

1 = ___o__+ (1g i0

b"..

V-: . and the error estimate ,

* i+j+k<p 1~~ Pl

.,, Ox' ax'a II z (--
r~) i,j,k 12X 3 iiX -(0 Y()

%, n = .

0'. The multipole expansion of (3.4), therefore, is 0

k

j ai 1 2 3

-. 7.

* A

%4

CHAPTER 3. A 3-D N-BODY ALGORITHM 18

where
r

' (n)\
=ij (.~ -/A ai 3k)

Furthermore,

i+j+k~p 1 9i+3 +k (1 r
~(x)- X akO Ii tnii O)

c~j X'1 ax~x X Y'2 3l X-

(3.19)a where

n=1I

The following theorem produces an expansion for 1/r in a spherical region
of analyticity, which is the basis for flipping the region of analyticity in0
shiftings, as required by the fast algorithm.

Theorem 3.2.2 Using the quantities in Figure 3.1 again, if R < ro, that is,
if X = (X1 ,X 2 , X3) measured relative to y(') lies inside the sphere of radius ro
centered at y(o), then0

1 00

r bij:Xxxx 3 (3.20)
r i,.i,k=O

where

_ (~)l++k LUJ LIJ LU
bijk - ~~~ 2-. 2. 1 AR (3.21)

A-2 (i+ j + k -a-~

A j (+ k -a-3 (i -a)! (j -3)!(k -y)!

(a) (i -1)(k ~) (2v)i-2a(2 v2)j-2 P()k-2-

here V 1 ,LV2 , V'3 are the direction cosines of y(O)y.
* The error bound for truncating terms of i +Ij + k > p satisfies

ftj (3.22)
r0

I'd'% 0Iw

CHAPTER 3. A 3-D N-BODY ALGORITHM 19

Proof.
Using the relationship in (3.6), we have

1 1
r /R2 + r02 - 2Rro Cos

1 (3.23)

ro +1 2- cos I
S ro

" Denote by rl, r2 , r3 the direction cosines of y(°)x, and V1, v2, L3 the direction

cosines of y(O)y. Then

COS I = 1 /V1 + 7-2 V 2 + 7 3 V 3

where -y is the angle between y(°)x and y(O)y. This leads to the equality

ro) r0 ro ro

If we introduce the variables

t l 22 , 3t =-,t 2 = ,t 3 =L, andrd ro ro r 0 4
a= t(t - 2v,),3= t2 (t 2 - 2v2), =t 3(t 3 - 2v3), (3.24)

equation (3.23) becomes S

r 1 0

We can expand this as a Taylor series

1 00/\.,
= (3.25)

r ro 0 (n!

that is valid for ca + 3 + -yj < 1. But

(a+ +a)0= -y
i+3+k=n

a
"W

:011i

CHAPTER 3. A 3-D N-BODY ALGORITHM 20

thus

~ro i,j,k=O

where
b = i + j + k)!
G ~ +j + k) ijk

Substitute a, 3, -f with (3.24), the Taylor series of (3.26) becomes
11' ,, (xiV (x2 (X3I

r rO i,j, =O 0 % 2 L- k (3.27)

where

= ,
L- b'ca J 3

bijk= L . L L j.j(-),(j-0I),(k-y)
-Y=O 0=0 0=O

r i,j,k=O 1 2

where
(r ++i-.k - k

As in Theorem 3.2.1, the error bound for truncating terms of i +j + k > p
i n (3.20) satisfies

In the following lemnma, we produce a formula which shifts the center of
a multipole expansion valid in a region of analyticity outside a sphere.

o1

CHAPTER 3. A 3-D N-BODY ALGORITHM 21

',ro R,R' \

Y(0 Ar10
?:.,. \ i

Figure 3.2: Lemma 3.2.1

Lemma 3.2.1 Given a multipole expansion

00 gc+#-

I) = a x -a,,O , (3.28) '4

with respect to y(O), valid in the region outside the sphere of radius ro centered
at y(O), suppose we shift the reference point y(O) to y'(O) with 11 y(-) - y(O)

. iAr, as shown in Figure 3.2. Note that R' =11 x - y'(O) 1I. The new multipole
expansion of (3.28), with respect to y'(O), in the region outside the sphere of

%I' radius ro + Ar centered at y'(O) is

*0'X cijk kxa~~x((3.29)

where
i i k

c k = , a_ _ (3 .3 0)'-'*" a=O)3=0 Y=O

0
Here X = (X 1,X 2,X 3) are the Cartesian coordinates of the point x relative
to y'(O), and aijk are the coefficients in the expansion for 1/R with respect to

4,,..0'(0

1%

r

hV.
k

%

CHAPTER 3. A 3-D N-BODY ALGORITHM 22

The error bound for retaining terms of i + j + k < p in (3.29) satisfies

+ Ar p+l
C _ o R' (3.31)

Proof.

Using Theorem 3.2.1, we expand 1/R, with respect to y'(0), in the region
outside the sphere of radius Ar centered at y'(o) as

1 0 8 i+j+k (
aiik X 8 , 8.4 R. ' (3.32)

i,j,k=O t" 1 2'aX 2 3

V4
where , =(_~iJ+c~i++k

aijk = .i!j!k! '1 *T T3 "

ri, r2, r 3 are direction cosines of y,(O)y(O). Notice that after the shifting there
is

Xi - Xi y() _ y, i =1,2,3

Therefore

ax, - ax"
Substitute (3.32) into (3.28), we have

(x a. 2 iy-y" ax (
,O,----O axax I,j,k=O I

that is

0 (x) a.-y aafl 'i~
-- aaB, ijk , a i, 3.+j " Y+-';

cO,--O i,j,k=O 0'QlJX2 x'3 XR3

which is vaLid outside the sphere of radius ro + Ar centered at y'(0). Make
substitutions of a + i = i, /3 +j = j', + k = k', we get

*0 ai+j,+k' 1.D(X) =i j_ k i zYX1 , k',

i,j,k=Ol12 3"('3

*:-,- -S, . :. .. , ..€...-, . ,.. ; , - :

* S

CHAPTER 3. A 3-D N-BODY ALGORITHM 23

where
: '{ ~ ~ ~ ~ ~ ~ i cilk k' ,''-,' k-

, a=O 0=0 -Y=0% So far we have proved the expansion (3.29).

Since the multipole expansion of (3.29) is unique in terms of the deriva-
tives of 1/R', we could estimate the error bound for truncation in (3.29) as

if we expanded it directly with respect to y'(0). From (3.19) we know that is

ro + Ar P+1
.¢-.., - R1

We now show how to convert a multipole expansion into a local expansion
valid within a spherical region of analyticity, by shifting the reference point.
The region of analyticity is flipped.

Z'..

",

/ 0)

}'.: Figure 3.3: Lemma 3.2.2

• Lemma 3.2.2 Given a multipole expansion

=~~~~Dx a . --- - . , (3.33)

FA. %-

cr,3,-Y=O 1'' v 2 v'3

'

o-~

".N
4F,, .;

CHAPTER 3. A 3-D N-BODY ALGORITHM 24

with respect to y(Ol), valid in the region outside the sphere of radius ro centered

at y(O), suppose this time the reference point y(O) is shifted Ar to y'(O) with
Ar > ro, as shown in Figure 3.3. The new multipole expansion of (3.33),
with respect to y'(O), this time inside a sphere of radius (Ar - ro) centered
at y'(O) is

00

4 (X) = vlX23X, (3.34)
i jk

where
1 00 5

cijk = 0 aCaoybi+c,j+,k+.(i + a)!(j + #)!(k + -y)! (3.35)
i!j vk a, ,=oS

Again X = (X1 , X 2 , Xa3) are the coordinates of the point x relative to y'(O).
bijk are the coefficients in the expansions for 1/R with respect to y,(O).

S The error bound for retaining terms of i + j + k < p in (3.34) is

C (3.36)

Here R'--I1 x - 1,(O)

U-." Proof.
From Theorem 3.2.2 we can expand 1/R, with respect to y'(O), inside a

spherical region with radius (Ar - ro) and center y'(O) as

R Z bikX1X X3 (3.37)

where

__(-)+j+k L2J [2 [1
b.k -'i+,ij+/- Z Z AB (3.38)

'" A = (_1_(i + J+ k-- -fl-)!
* i+j + k- cc- 0- 7 (i - a)!(j - fl)!(k - y)!

($j (20r)i2(2 2)j2(2r 3)k-2
a)

0

CHAPTER 3. A 3-D N-BODY ALGORITHM 25

r 1 , r 2, r3 are direction cosines of y'(O)y(O). Substitute (3.37) into (3.33)

(X) = aa Yko kx bix

(i- a)!(j -)!(kE-)! b ikX (3.39

*W4,
*The region of analyticity is the inside of the sphere with radius (Ar - ro) and ,

center at y,(0). After making substitutions of i -a = i', j -/3 = j', k - = k',

we get
00

* '(X) = _ v, -Y (3.40) 0

-- (9x,9 'ax i fl k = l"k2""ijk=

where :.
1 00 00 00

ci,3,k, = i,!j,!k,! a,,bi+,+,+,k,+y(i' + cx)!(j' + f3)!(k' + 7y)!. (3.41) ,:

[, This completes the proof of (3.34).

IF '.'Similar to Lemma 3.2.1, the error bound for retaining only terms of i +Sa(j (+k ! p in (3.34).is

-- r-r 0 "

~We also derive a formula for shifting an local expansion within a spherical
region of analyticity.
Lemma 3.2.3 Given a local expansion

00

-t-X Cijk'X 1 X2j3 A; 3.0

) = c xj,j,xkO +!

:... . with respect to y(O), valid in the region inside the sphere of radius r0 centered

*3 * , a,-=

at y(O), we expand (x) inside the sphere of radius ro - Ar centered at y,(O),

Si tr
+ p .

*e 0 C

a'4...

Weas eieafruafo hfiga oa xaninwti. peia

rein fanltiiy

Lem 3.. ie oa xaso

CHAPTER 3. A 3-D N-BODY ALGORITHM 26

•0

I.

ro

R 0

Figure 3.4: Lemma 3.2.3

after y(o) is shifted Ar to y'(O) with Ar < ro as shown in Figure 3.4, as

= djkX'X2X
i,j,k=O

with X = (Xl, X 2 , X 3) the new coordinates of the point x with respect to y'(O),
and

+*2 (3+xAx (3.42±dik = Ci+ar,i+,k+y 2 3.2

Here y,(O) - Y(0) = (AxI, Ax 2 , Ax 3).

Proof.
This can be derived by re-expanding the expansion

00

D(X) = cijk(Xl + AXI)(X 2 + Ax 2)'(X 3 + Ax 3)k

i,j,k=O

in powers Of Xl, X 2, X 3. No truncation errors are introduced in the calcula-

tion of (3.42).

N "W
LIZ

CIIAPTaR 3. A 3-D N-BODY ALGORITHM 27

Having derived the potential in the form of the multipole expansion

Cijkxi1 2X3

i,j,k=O

we recall from the equation (3.5) of Section 3.1 that the force is obtained by

where
V =)a a

NS

Therefore,

0000 00,i zi,-lj i j k-1
"- ' -f Cijk 1 2Xk,- /X J:jlXk , -- ikXlX

(.c"x xx 3 -i,j,k=O i,j,k=O i,j,k=O k

3.3 A Sequential Algorithm

In this section we give a complete description of the three-dimensional N-
body algorithm. This algorithm is similar to the two-dimensional algorithm
of Rokhlin and Greengard described in Chapter 2, however this time, we use
the analytical results obtained in the previous section. This formulation of
the algorithm is for a sequential computer. We present a parallel version in
Chapter 5.

The three-dimensional space under consideration is taken to be a cube
(Figure 3.5). We apply the operation of subdividing a cube into eight identi-
cal subcubes repeatedly, until a subcube has only a few particles in it. When
the particle distribution is relatively uniform, the level of subdivision is ap-
proximately n = [log8 NJ. By convention, we say that the initial cube is
at level 0, and the atomic cubes, i.e., cubes at the finest level of the spatial
refinement, are at level n. As in the two-dimensional algorithm, we define for
a cube its near-field, far-field and interactive-field. The near-field of a cube
is defined as consisting of those cubes that are at the same level as the cube,
and have distance to the center of the cube less than V3 of the cube edge

, length; the far-field of the cube is the complement of its near-field and itself;
and the interactive-field of the cube is the part of its far-field contained in
its parent's near-field.

.4 .,

CHAPTER 3. A 3-D N-BODY ALGORITHM 28

1%%

I%

_

I,
01 1 , V

. 0

Figure 3.5: Decomposition in a three-dimensional space

For a cube i at level 1, we denote by O (x) the multipole expansion, valid

in the far-field of the cube, for the potential due to particles in the cube; and
by Vfr(x) the local expansion, valid inside the cube, for the potential due to
those particles in its far-field. Both O (x) and OI(x) are expanded relative to

the center of the cube.I
A description of the algorithm is given in Figure 3.6. n is the total levels

of spatial refinement.

Step (1) computes initially the multipole expansion 0!(x) for each atomic
cube. This is obtained by adding together series expansions, relative to the
center of the cube, for potentials due to individual particles in the cube.

Step (2) computes the multipole expansion O(x) for each of the cubes at
all intermediate levels in an upward manner. For a cube i at level 1, the
multipole expansion O (x) is computed by summing 0'+1 (x) of cube i's eight
subcubes that are shifted to the center of the cube i.

Step (3) computes the local expansion O(x) for each of the cubes. For
a cube i at level 1, the computation

consists
of two parts.

First it shifts

0--'(x) of cube i's parent to the center of cube i, which constitutes the far-
field interaction. Then, it computes interaction with its interactive-field by
summing O(x) of the interactive-field that are shifted to the center of cube i.

I U.Ni

WUr'x r UWU%1~ -I ------
'. ,4-

A.'

CHAPTER 3. A 3-D N-BODY ALGORITHM 29

00

The sum of these two parts is the local expansion V) (x) for the cube. This
is recursively performed when walking down the refinement tree.

Finally step (4) computes the desired potential for each of the particles.
The far-field potential is obtained by evaluating O(x) of the atomic cube

the particle belongs to at the particle position. The near-field potential is
obtained by a direct computation. ,

The error estimate for the algorithm is given by (3.31) and (3.36). By KY'
the definition of the near-field and far-field for each of the cubes, we have

(ro + Ar)/R' < 1/2 in (3.31) and R'/(Ar - ro) < 1/2 in (3.36). For a
required accuracy of e, we choose p = [-log2 J.

Let's analyze the computational complexity of the algorithm. The total
number of the cubes at all levels of the subdivision is

88n + - I 8N -

80 + 81 + +...+ 8= - 7 7"5V

Step (1) takes O(N) work to compute N series expansions for all the N
particles. Summing these expansions to form O(x) for every atomic cube
takes another O(N) work.

In step (2), it takes one shifting and seven summations of expansions to

compute O(x) for each of the cubes. This takes constant amount of work for
a prespecified p. Since the total number of the cubes is of order N, the work
to compute O(x) for all the cubes in step (2) is of order o(N).In order to compute O(x) for each of the cubes in step (3), we need to do

one shifting on the parent O(x) and one shifting for each of the cube in its

near-field, and then sum the resulting expansions. Since the number of cubes
in each cube's interactive-field is bounded by 567, it takes a constant amount
of work to compute O(x) for each of the cubes for a fixed p. Therefore step

(3) takes o(N) work in total to compute O(x) for all the cubes.
We have chosen the level n of the subdivision so that the number of par-

ticles in the near-field of each atomic cube is bounded by a small constant.

Thus in step (4), for each of particles the direct computation on the inter-
action with its near-field takes work of order O(1). Evaluation of the local

expansion at the particle position takes again constant amount of work for a
fixed p. Thus, step (4) takes O(N) work to compute potentials for all the N
particles.

The overali complexity of the algorithm described in Figure 3.6, therefore,

is the sum of those of step (1) through (4), that is, order O(N).

4-..

0% k

- CHAPTER 3. A 3-D N-BODY ALGORITHM 30

5" (1) Initial expansions: for each atomic cube i, compute <'(x).

for i from 1 to 8' with step 1 do begin
)compute for each of the particles in the cube i the series

expansion for the potential due to the particle by using

Theorem 3.2.1;
sum these expansions for particles in the cube i to form
k (x) for the cube i.

end.

(2) Upward-path: for each of the cubes i at level 1 of the spatial refinement,
compute el(x) in an upward manner.

for I from n- i to 0 with step -1 do begin
for i from 1 to 8' with step 1 do begin

shift 01+1(x) of cube i's eight subcubes to the center of

the cube i by using Lemma 3.2.1;
Sum the shifted (L+l(x) of cube i's eight subcubes to form
0((x) for the cube i. p

end.
end.

(3) Downward-path: for each of the cubes i at level 1, compute 7p(x) in adownward manner.
.

Afor I from 1 to n with step 1 do begin
for i from 1 to 81 with step 1 do begin

(3a) shift 01-1(x) of cube i's parent cube to the center

of the cube i, by using Lemma 3.2.3;
(3b) shift O(x) of the interactive-field to the center of

cube i, by using Lemma 3.2.2.
sum the resulting expansions of (3a) and (3b) to form
V);(x) for the cube i.

end.
5.end.

Figure 3.6: A sequential algorithm
f%'5

.5-

CHAPTER 3. A 3-D N-BODY ALGORITHM 31

(4) Final evaluation: For each of particles, compute the potential at the particle.

for particle p from 1 to N with step 1 do begin -
(4a) evaluate 0!'(x) of the atomic cube i the particle p belongs

to at the particle position;]
(4b) compute directly interactions with particles in its near-

field and in the cube i.
add (4a) and (4b) as the desired potential for the particle p. .

end.

* 0
Figure 3.7: A sequential algorithm (con't)

* S&

i
0 0 ll

~Chapter 4

~Numerical Verifications of the
:::o:Three-dimensional Algorithm

" . This chapter numerically verifies the three-dimensional algorithm of Chap-

:-',.-"ter 3 with respect to the achieved accuracy and speed of the algorithm. We

, .- first describe a sequential implementation of the algorithm. We discuss our
choice of a 3-D tree data structure, and describe heuristic methods for in-

I creasing the efficiency of the implementation based on a detailed analysis on -
': the time complexity of the algorithm. We then present experimental results

~to demonstrate that the algorithm does have linear growth and does compute
the forces and potentials to within any prespecified tolerance up to machine

)' precision. We also compare the speed of the algorithm with that of a direct

computation and find that for a required average accuracy of 10' for poten-

tial fields our implementation will be faster when there are more than 1,000
i !::particles.

• 4.1 A Sequential Implementation

e i":! 4.1.1 3-D Tree Data Structure ,

:(..,As described in the previous chapter, the algorithm requires the data struc-

~ture used for the implementation to hierarchically decompose a three-
dimensional space and to support operations such as insertion, deletion, and

.-. searching. Therefore a 3-1) tree data structure is an obvious choice.
. A 3-D tree [knu81] is a balanced eightfold- branching tree, in which each

• 32

vo0

S", x' -

I6

CHAPTER 4. NUMERICAL VERIFICATIONS 33 U
level of nodes corresponds to one level of the three-dimensional spatial de-
composition. The 3-D tree is an extension of the two dimensional tree data
structure discussed in Section 2.2 of Chapter 2. In the 2-D tree, a node
and its four children correspond to a square and its four subsquares; in the
3-D tree, a node and its eight children correspond to a cube and its eight .

subcubes. Note that the root of the 3-D tree corresponds to the original
cube of space under consideration, while the leaves of the tree correspond
to atomic cubes. Since each node of the tree corresponds to a cube in the %
spatial decomposition, we regard the word "node" and the word "cube" as

interchangeable. From now on we will refer to a node as if we refer to the 0
corresponding cube in three-dimensional space, and use the phrase "the cen-
ter of a node" instead of "the center the cube". Each node of the tree has
pointers to its children, and pointers to its near-field and its interactive-field, -

as defined before. The near-field and the interactive-field for each node could
be computed at run time, but in practice this is too expensive. In a long- '.

term simulation, which iterates over many time steps, these fields would have
to be recomputed again and again. Therefore, we initially establish static
pointers to each node's near-field and interactive-field. This approach saves
time but requires extra storage space for these pointers.

Particles are initially contained in leaf nodes of the tree according to their S
positions. After each iteration of a simulation, information about particles,
such as positions, velocities, etc. is updated. A particle is moved to a new
node if it crosses boundaries of an atomic cube. Coefficients of expansions
at various stages of the computation are stored in 3-D arrays held by each
node. The hierarchical clustering of expansions is done by walking up and -
down the tree.

The level of spatial refinement is chosen approximately as log, N. Thus,
the 3-D tree is about log, N levels deep.

4.1.2 Implementation Details

In this section we discuss the implementation of the algorithm on a Symbolics
LISP machine, and describe techniques for increasing the efficiency of the
implementation.

Speed is the major concern in our implementation. One way to measure
the efficiency of our implementation is to compare it with an implementation
of the direct computation. For the first few implementations of our algorithm

-
N

10k.

CHAPTER 4. NUMERICAL VERIFICATIONS 34 Dl

on the LISP machine, the code ran extremely slowly. For p =3, the crossover :.:
point where the running time of our method falls below the running time of ..
the direct method was at about 10,000 particles. "!:.

Performance monitoring revealed opportunities for both machine-
independent and machine- dependent optimizations. ,

We discuss the machine- independent optimizations first. Shifting expan-
sions due to interactive-field potentials is very expensive. This accounts
for most of the hidden constant in O(N). For each node in the tree, we
need to do 567 shiftings on expansions, since each node has 567 nodes in
its interact ive- field. We can reduce this cost by grouping together nodes in
the interactive-fields. More specifically, we replace eight child nodes by their .
common parent node (we call it a super-node) if all eight nodes are in the/.
interaction-field of a single node. Using this heuristic, each node has only
140 nodes in its interactive-field. Numerical experiments indicate that this
modification speeds up the algorithm by a factor of about 8.

Another source of inefficiency in the initial implementation was the re-
dundancy in computing coefficients in shifting formulas. The repeated calcu-
lation of factorials and permutations was removed by storing factorials and ": '
permutations in a table. There is also repeated calculation of some com-
mon factors in the formulas. We simplified this part of the computation
by extracting common factors in sums, and by canceling common factors
appearing in successive stages of the computation.

For the machine- dependent optimizations, we found that a major portion
of the running time is spent on manipulating coefficients of expansions in
shirtings and evaluations. The bottleneck of the computation is the floating-

Z% point calculation and indexing of arrays storing coefficients of various expan-
sions. The array reference time was reduced by representing a 3-D array as
a 2-D array of 1-D arrays, or as 1-D array of 2-D arrays. This minimizes"
the array reference overhead since 1-D and 2-D arrays are better supported 2
on the LISP machine' . Because of the extensive use of array reference, the ,"
above improvement was significant. Other machine-dependent optimizations .
included using tight loops in frequently called procedures, and avoiding the,,''
creation of new arrays in manipulating expansions whenever possible. :

The above optimizations greatly reduced both the time and storage re-
quirements for the computation. The reduction in storage in turn reduces

'The idea is due to Rich Zippel.

W'. -.

I"', ." % " ' ' ' ' "-. . " " " "- ' ' " ' ' . '' '' - '" . . - , " . . ' . ' .. • ' - 4

N

-4t

CHAPTER 4. NUMERICAL VERIFICATIONS 35

the time due to disk paging. Overall, the machine-independent optimizations
reduced running time by a factor of 8 and the machine-dependent optimiza-
tions provided an additional factor of 4. The running time crossover point
with the direct computation is now at about 1,000 for p = 3 (See Table 4.4).

4.2 Experimental Verifications of the Algo-
rithm

4.2.1 Accuracy of the Algorithm 5

In this section, we study the actual achieved accuracy of the algorithm, and
compare it with the theoretical prediction given in Chapter 3. We first test
our algorithm on the Pythagorean configuration of three bodies and observe
how the error of the computation scales with p. Then we test the algorithm on
two typical distribution models, the uniform distribution model and Plummer
distribution model, each with 1,000 particles, and again determine how the
error varies with p.

(a) The Pythagorean Configuration S

The Pythagorean configuration of three bodies was first investigated by
C. Burrau in 1913 [SP67]. It is Pythagorean not only in the geometric sense
but also with respect to the masses. The sides of the triangle formed by the
three bodies are 3, 4, and 5 and the masses of the three bodies are also 3,
4, and 5. The configuration is such that the body with mass x is situated
at the vertex opposite to the side of length x, where x is one of 3, 4, or 5.
The initial configuration of the problem and the coordinate system used are
shown in Figure 4.1. Initially the three bodies are situated in the z = 0 plane
and have speeds zero, consequently the motion is planar.

We use our algorithm to compute the accelerations of the three bodies

and observe how error scales with p. The experimental results are given in

Table 4.1 and plotted in Figure 4.2. We define the relative error in each of
the accelerations as

* 0-4I)tt ~ -"t)"ll

.4.
2 a calculated - IIa-a,

relative 2 .(i)

Scal ulated + i.) 1_

.. ' e~

.,--

CHAPTER 4. NUMERICAL VERIFICATIONS 36

.

_. P2(2,2)

x

* P3 (-1, -2) P1 (2, -2)
m 3 = 4 m, =5

Figure 4.1: Initial configuration of the Pythagorean configuration of three bodies

where di)culated is the calculated acceleration on body i using our method in
single precision arithmetic, and a!') is the actual acceleration on that body
using the direct method of force computation in double precision arithmetic
and is therefore accurate to the machine round-off error of double precision
arithmetic.

In Table 4.1, ea., is the maximum error of all the relative errors in ac-
celerations

m"= Max (1) ,(n) "!.
* Emraxr --"relative, " " " iv

,,, is the root-mean-square error

erms = -' reilative)2,

•' n i

where n = 3 is the number of bodies in the test, and epotential-energy is the
relative error in total potential energy.

p.:

I,..,,

CHAPTER 4. NUMERICAL VERIFICATIONS 37

P __max frma fpotential-energy
1 0.58 0.46 0.0082

2 0.A4 0.27 0.0020
3 0.17 0.11 4.2 x 10- 4

4 0.078 0.049 5.7 x 10- 4

N 5 0.040 0.025 2.7 x 10- 4

6 0.019 0.012 8.6 x 10- 5
7 0.0086 0.0055 1.3 x 10- 0
8 0.0039 0.0025 6.6 x 10-bj
9 0.0019 0.0012 6.8 x 10- 6

10 9.0 x 10 5.7 x 10 3.5 x 1 0-6
11 4.3 x 10- 4 2.8 x 10- 4 1.1 x 10-6

12 2.0 x 10- 1.3 x 10 1.7 x 10- 7
13 9.3 xI0- 6.0 A I0 1.5 x i0-

* 14 4.4 x 10- 2.9 X 10- 9.4 x 10- 8
15 2.1 x 10 1.4 x 10- 5.5 X 10-

16 1.0 x 10- 5 10 - 5.7 x 10-117 5.0 x 10-' 3.2 X 10-6 5.5X 10

18 2.3xi0- 1.5 xi0-T 2.0x 10-

19 1.1 X 10-' 7.8 x 10--' 1.7x i0-
20 5.5 x 10-7 4.0 x 10- 1 3.6 x 1071

Table 4.1: Accuracy test for the Pythagorean configuration of three bodies. p is

the highest degree of harmonics retained in an expansion.

Table 4.1 shows that the accuracy of the algorithm is improved by ap-
proximately a factor of 2 when p is incremented by 1 for p greater than 2.

V Consequently, the dots in Figure 4.2 are distributed nearly on a line, since
the error axis is scaled logarithmically.

0 Note that the near-field in this implementation has been defined so that
the ratio appearing in the error bounds (3.31) and (3.36) of Chapter 3 is
1/2. The factor of 2 decrease in errors for each increase in p is thus expected

.4 from the formal analysis. The results presented in Table 4.1 and plotted in
Figure 4.2 match well with the predicted error bounds.

The experimental results exhibit two phenomena that warrant further
discussion. First, the error 4 (i) in individual accelerations does not de-

".'.. dicsin ist h ro V

5.-,
reatv

mi41 ... W

CHAPTER 4. NUMERICAL VERIFICATIONS 38

Error[LOG-EJ

o.a,.0 4.0 6.0 8.0 10.0 12.0 1.0 16.C ,18.0

6S

.50-5

-p-

3.1e-7

.1e-9

-- 0 Max-error
S- - RMS-error

Figure 4.2: Plot of the accuracy test for the Pythagorean configuration of three
bodies. p is the highest degree of harmonics retained in an expansion.

/S
, crease monotonically as p increases. Second, the calculated accelerations have

nonzero components in the z-direction, which is perpendicular to the plane
of the three-body configuration. Below, we discuss how these phenomena
arise.

Nonmonotonic decrease of E t with increasing pThe derelaive

The nonmonotonic decrease of 4 rative for individual accelerations with
increasing p is due to the fact that a multipole expansion is a mixed-sign
Taylor series. The error due to truncating a multipole expansion is also a

*, mixed-sign series. Consequently, the error from truncating the multipole 5
expansion does not necessarily decrease monotonically when retaining more
terms in the multipole expansion. Nevertheless, the error in individual ac-%" celerations is always bounded by 6,a in Table 4.1, which, like the predicted

0: error bounds, decreases monotonically as p increases.

Nonzero z component for accelerations

The nonzero z component in our computation results from two kinds of

, , 1

J* MS

CHAPTER 4. NUMERICAL VERIFICATIONS 39

truncation: the primary truncation and the secondary truncation. We note
that each term of the multipole expansion in Lemma 3.2.2 of Chapter 3
is approximated by a convergent Taylor series, which we will can term se-
ries. In computing the multipole expansion using Lemma 3.2.2, the primary
truncation truncates the multipole expansion and the secondary truncation p.

truncates each term series .
In the multipole expansion computed from Lemma 3.2.2, the coefficients

in each dimension are determined by parameters in all three dimensions. If an
infinite number of terms were retained in computing both the term series and
the multipole expansion, then the z component of the multipole expansion
would be zero due to cancellation among nonzero z terms. Since only a finite
number of terms are retained, the z component of the multipole expansion 4.
is not completely canceled.

Intuitively, we might expect that retaining more and more terms in the
term series would reduce in general the secondary truncation error in com- I..

puting the multipole expansion and in particular the error in z-direction. But
the experimental results show that the intuition is unfounded. The reason is
that the multipole expansion and the term series are mixed-sign series. The
fact that each of the terms in the multipole expansion is better approximated
by the term series does not necessarily guarantee that the resulting truncated
multipole expansion is more accurate.

(b) Uniform Distribution of 1,000 Particles

We verify the accuracy claim of our algorithm using a configuration in
which particles are distributed uniformly. In this test, the system has 1,000
particles, each of which has mass 1/1000. The results are shown in Table 4.2.
The errors Emax, ,max, and epotentia enegy are defined as before. The results
match well with the prediction.

(c) Plummer Distribution of 1,000 Particles

We also test our algorithm to determine if the accuracy of the algorithm
is sensitive to the distribution of particles. The Plummer distribution is a
nonuniform distribution with the density profile [Her86] "

3M r0o"

p(r) = 3M 5/47r (r2 + ro) 1

* 0k

VA", V % ,r
-, ,

CHAPTER 4. NUMERICAL VERIFICATIONS 40_ _ _

P 0.6 50a rms Epotential-energy

2 0.11 0.016 1.6 x 10- r
3 0.095 0.0065 45 x 10-

4 0.024 0.0028 1.1 x 10- 7

5 0.016 0.0014 1.9 x 10- 7

1 6 0.0083 7.0 x 10- 4 2.9 x 10- 7

7 0.0026 3.3 x 10- 4 2.7 x 10- 7
8 0.0017 1.9 X i0' 111.3 X 10- 1N

~ 9 910
- 4 9.7 x10- 0 .x1

-

9 x 3.2 X 0

Table 4.2: Accuracy test for the uniform model. p is the highest degree of
harmonics retained in an expansion.

*0

which is spherical and isotropic. M is the mass of the system and r0 is the
j:-,,scale-length.

In the test the initial configuration of the system has two clusters, each of
which is a Plummer system with 500 particles. Two clusters have the same
M and r0 and are separated by 5r0 . A two-dimensional projection of this
configuration is shown in Figure 4.3.

The experimental results are given in Table 4.3. Again, they match very
well with the theoretical prediction.

In summary, the accuracy of the algorithm is demonstrated in Table 4.1, 0

Table 4.2, and Table 4.3. These indicate that our method can compute forces
and potentials to within any prespecified tolerance up to the machine round-
off precision, which is about 7 decimal digits in single precision arithmetic
[Ref85]. As we retain more and more terms in the multipole expansions,
the accuracy of our method improves, and when p = 20 the error of the
computation is at the level of the machine round-off errors.

4.2.2 Running Time of the Algorithm

" In this section, we test the speed of our algorithm and experimentally
determine how the running time grows with the number of particles. We also

compare the results with those of a direct computation and determine the

-..-0.'-

* CHAPTER 4. NUMERICAL VERIFICATIONS 41

00.* **..":*."*.

.'' .-:.. . . -; .

I .-. o'.;. . ..

. ' , 0 •

• *y "

4 %

10-
/" ... *5,,*..e .1.. . **.-''

1 0 .5 * 0 . .3. x 1

. •* .'1 * ."_

2 0. 01 1. "'.: .X 1 0-

3" 0 .3 005 7.7 X" ' 10-6

5-.06 7.x 1-4 . 0

, " Figure 4.3: Initial configuration of two Plummer systems

I) m=
4

m a otena-energ/

T 0.56 0.076 3.3 x 10-4 2
2 0.13 0.019 1.8 x 10-
3 0.032 0.0053 7.7 x lO10'.:
4; 0.014 0.0018 1.2 x 1o- ;
5 0.0066 7.3 X i0-4 7.5 x I0-'

*6 0.0030 3.3 x I0- 2.6 x i0- l

7 0.0013 1.6 x i0-4 6.4 X 10-

8 5.9 X 10-4 7.9 x 10-F 2.1 x 10- 15-
9 2.8 x 10- 4.0x 10- 2.1 x 10- ;

Table 4.3: Accuracy test for the Plummer model. p is the highest degree of
harmonics retained in an expansion.

% % % N U
%

CHAPTER 4. NUMERICAL VERIFICATIONS 42

A%
_ _ _ _ _ _ _ _ _ _%

Number of Running Time (sec.)
Particles Mult ipole-expansion Direct Speed- up

64 12.60 2.30 0.18
128 22.73 9.08 0.40
256 51.38 39.04 0.76
512 409.95 156.34 0.38

1024 620.92 616.62 0.99 0
2048 1050.65 2468.72 2.3
4096 5221.29 9858.48 1.9
8192 7203.37 139433.92 5.5

16384 11411.68 1157735.69 13.8

%Table 4.4: Speed test for the Multipole-expansion algorithm with p=3. Resultsj
of a direct computation are also presented for the purpose of comparison. The
running time excludes paging time.

Running- t imeLOG-E3

2.2e4

1.5e2

* 0 10e2 .2e2Number-ot'-partic lesLOG-1 0]
1.e 3.2e 1.0e3 3.2e3 1.0e4l

a-!SMultipole-expanslon MethodI

* Direct Method

Figure 4.4: Running time growth rate of the Multipoie-expansion algorithm,
plotted against that of the direct computation.

0%

* kmS -ai

CHAPTER 4. NUMERICAL VERIFICATIONS 43

running time crossover point. In the test, particles are initially distributed
uniformly within a spherical region. The space under consideration is the
cube of space containing the spherical region.

The results of the test on the speed of the algorithm are given in Table 4.4,
and are plotted in Figure 4.4. The running time growth rate of the direct
computation is also plotted for comparison. In the plot, both the running-

7< time axis and the number-of-particles axis are scaled logarithmically. The
parameter p of the algorithm is chosen as 3 and the calculated potentials are
accurate in average to about 10- 4 .

of Figure 4.4 shows that the running time of our sequential implementation
of the algorithm grows linearly with the number of particles. The jumps in
the curve when the number of particles are 500 and 4,000 are due to the

.. overhead of maintaining the tree structure when the tree grows one level
deeper. The height of the tree grows logarithmically with the number of

,.* particles to enforce the constraint that the number of particles in each atomic
cube is bounded by a predetermined constant.

The running time crossover point of our algorithm with the direct com-
putation is at about 1,000 particles. This means that for a required average
accuracy of 10' for the potentials, our sequential algorithm is faster than
direct computation when there are more than 1,000 particles.

4.3 Discussion

We have numerically verified the three-dimensional algorithm with respect
to the achieved accuracy and speed of the algorithm in the previous sections.
In this section, we discuss some additional issues concerning the use of our
algorithm.

(a) Tree Overhead

We note the overhead of maintaining the 3-D tree data structure in Sec-
tion 4.2.2. The tree has a complicated pattern of links for the near-fields andI the interactive-fields at each of the nodes. Much of the computation time Is
spent on tracing these pointers. When the tree is not fully loaded, this part
of the overhead will dominate. This accounts for the jumps in the curve in
Figure 4.4.

.11*

CHAPTER 4. N UMERICAL VERIFICATIONS 44

(b) Distribution of Particles

We have assumed in Chapter 3 that the distribution of particles is rel-
atively uniform within the region under consideration. For very clumpy
distributions, the performance of the algorithm will degenerate. If we still
construct the decomposition tree with height of [log8 NJ, step (4) of the
algorithm would take more than O(N) time to compute all the near-f!=ld
interactions. Otherwise, to maintain the condition that the number of parti-
cles in each atomic cube is bounded by a predetermined constant, we would .

have to construct the tree with height of O(N) in the worst case. Then
step (2) and step (3) of the algorithm in Figure 3.7 of Chapter 3 would take
time exponential in N to compute all the multipole expansions. One way to
improve the efficiency is to dynamically prune empty tree branches, that is,
if no particles are founded in a branch, the branch will be pruned from the
tree.

(c) Choice of p

We have demonstrated in Section 4.2.1 that the accuracy of our method
improves as we retain more and more terms in the multipole expansions.
How big should the parameter p be in practice? This question depends on
the specific nature of a problem. The goal of a numerical simulation is not
always "accuracy" in a strictly mathematical sense, but rather "fidelity" to
the underlying physics in a sense that is looser and more pragmatic [Pe86].
Often, as in galaxy simulations, the conserved system quantities such as total
energy and total momentum are of more interest, so monitoring on these 0
quantities will better reflect how good an algorithm is. Sometimes we only
want to look at the statistical behavior of a system. In such context, some
types of errors are much more tolerable than others. Another reason is that
the error introduced by the discrete integration time step of a simulation is
itself comparable with that of truncation [App85]. Therefore choosing small -
p often suffices. This will greatly reduce the constant factor in our algorithm.

*- -.

% %

,% .h

t S

0

,i Chapter 5

A Parallel Algorithm

5.1 Introduction

It is clear that the N-body method of Chapter 3 can take significant ad-
vantage of parallelism. With a massively parallel computer, where we can
allocate a separate processing element for each particle, we can compute from
expansions the potentials for all of the particles in one parallel step. We can
also propagate values up and down the spatial-decomposition tree, as in steps
(2) and (3) of the algorithm in Figure 3.6, in parallel, generating expansions
for all the nodes at a given level in one parallel step. The depth of the tree
grows as log N, so a complete propagation will require time at least on the
order of log N. 0

In this chapter, we present an extremely fast implementation of the N-
body code-a parallel implementation of the algorithm, whose measured run-
ning time does indeed grow as O(log N). The code runs on the Connection
Machine, which is a massively parallel SIMD computer, consisting of up to
65,536 processors, each with its own local memory, connected in a commu-
nications network. On the Connection Machine model CM-2 that we have
been using, each processor is a one-bit ALU with floating-point unit and 64K

bits of local memory.
In designing a practical algorithm for a large parallel machine, there are

two issues that must be addressed in addition to the issue of deciding which
steps should be performed concurrently. For many large parallel computa-
tions, local computations at each processing element are relatively cheap,
while communications among processing elements are expensive. The bot-

0 45

- 0

* S l

CHAPTER 5. A PARALLEL ALGORITHM 46

tleneck of the computation is the interprocessor communication. Thus, an
efficient program must be designed to minimize both the need for interpro-
cessor communication and the contention generated by whatever communi-
cation is required. For the parallel N-body code, we exploit the locality of
the algorithm to reduce the need for communication. In addition we exploit
the regularity in the communication patterns of the algorithm in order to
substantially reduce contention for the underlying communication resource.

5.2 Why a Parallel Computer?

In the tree walking of our sequential algorithm, computations on expansions
-€.ft'. could be done concurrently within each level of the tree. Tremendous speed-
0 ' up can be expected if we exploit this parallelism. The question is how to map

our problem onto a parallel machine, either a machine specially designed

for this problem or a commercially available one, such as the Connection
Machine.

- Let us take a close look at the sequential algorithm we developed in Chap-

-" ter 3. First, the tree computation has regularity over all nodes at each level of
the tree. A SIMD machine suffices for computation of this pattern. Second,
the tree computation has concurrency. Computation at each of the nodes
within a single level of the tree can proceed at the same time. Third, the

tree computation has spatial locality. In the upward-path of tree walking,
each of the nodes talks only to its parent node. In the downward-path of
tree walking, each of the nodes talks not only vertically to its parent, but
also laterally to those in its interactive-field. The lateral communication with
a node's interactive-field is local to a subtree rooted the node's predecessor
four levels up in the tree. Depending on how we construct the tree on a
parallel machine, we might be able to exploit this locality. Lastly, the tree
computation has dependencies among levels of the tree. More specifically,
computation at one level of the tree cannot proceed unless the computation

-.: one level up or down is finished. This determines that the optimal perfor-
mance we can achieve from the tree computation is proportional to the height
of the tree, that is, O(log N), where N is the number of leaves in the tree.

0 We choose the Connection Machine to implement a parallel version of the
algorithm developed in Chapter 3.

*--' S

CHAPTER 5. A PARALLEL ALGORITHM 47 I
5.3 3-D Tree on the Parallel Computer
We use a 3-D tree as our data structure, as in the sequential implementation. ,.
The goal of the algorithm design is to distribute the components of the 3-D

tree structure among many processors so that the concurrency in the tree
computation can be maximumly exploited.

We allocate a processor to each node of the tree. The upward-path and
downward-path of the tree walking of the algorithm require that each node
in the tree has links to its parent as well as to its children. Explicitly storing
these links would be expensive, since each node has one parent and eight
children. However, since the tree has a fixed branching factor, a regular
allocation of processors for the tree will impose an implicit relationship among U
the processor addresses, as long as the tree is allocated within a well-defined
region of processors. This scheme is called the address-induced representation

of the tree structure [Hil85] [Chr84].
More precisely, we allocate consecutive processors to nodes, starting at

the root of the tree. We first make a sequential breadth-first scan of the tree
to be constructed, and label each node as we encounter it, starting from 0

at the root. Then we assign to every node a processor (or a fixed number
of processors) whose address is the breadth-first scan label of the node. We
therefore have a formula to induce the parent-child relationship for every
processor in the tree. Given the address i of a processor, we know that its
parent processor has address of L(i - 1)/8J, and its child processors have
addresses from 8i + 1 to 8i + 8. By representing the tree in this way, we avoid

having to store pointers at every tree node. However, the saving in storage
is achieved at the cost of computing the tree structure every time we trace
pointers.

We also allocate a processor to each of the particles in a test 1. Each leaf
node of the tree remembers addresses of those particles that belong to the
node spatially, so that those particles can be accessed simply by referring :
to the leaf node during the computation of its near-field. Similarly those

particles also remember the leaf node for the initial expansion stage of the
computation. This representation of particle-leaf-node links has an additional
advantage. After every time step of the simulation, the tree may be updated
for particles that move to new cells. This process is easy, since only particle-

'It is possible that the allocation of the tree overlaps with that of the particles.

4..,4.4.4.,%
N4..%

CHAPTER 5. A PARALLEL ALGORITHM 48

leaf-node links need to be updated.

5.4 A Parallel Algorithm

In this section, we will describe a parallel implementation of the algorithm
we developed in Chapter 3. The basic patterns of communication include

4.'- passing and combining data among processors vertically and laterally with
respect to the embedded tree structure. The description of the algorithm is
summarized in Figure 5.1. Notations are used in the same way as that in the

-sequential algorithm of Figure 3.6. The number of levels in the tree is n.

In Step (1) of the algorithm, each node of the tree is mapped to a proces-
sor. Since the tree only needs to be built once, the sequential construction is i
not a serious drawback as long as we amortize its cost over many time frames

* in a simulation.

Step (2) finds for every node of the tree its near-field and interactive-
field nodes. This could be done at run time, since the addresses for these
nodes take a fair amount of memory spaces. But this means that we have
to find these nodes every time we want to access them. We know that there
are 81 nodes in a node's near-field, and 567 nodes (using heuristics this can

4," be reduced to 140 nodes) in each interactive-field (we ignore the boundary
conditions). Experiments have shown that the calculation of these fields is
very expensive. So we precompute these fields and store them. Step (3)
inserts all the particles into the tree.

Step (4) initially expands potentials for all particles and forms the ex-

4' pansions - for leaf nodes of the tree. An expansion for the potential of a
particle is valid outside the leaf node the particle belongs to, and has the
center of the node as the reference point. All expansions of a single leaf node
are added together. This is done all in parallel. ('s and T's are expansions
as defined in Section 3.3, and are represented as arrays of parallel variables.)

." "Step (5) implements the upward path of the tree walking, which computes
0 for every node of the tree. The computation proceeds in this way: nodes at
one level of the tree in parallel shift the 's to the centers of their respective
parents, combine the shifted V's according to whether they have the same
parents, and send the results to the parents.

Step (6) walks down the tree and computes TI's for every node of the tree.
Every node in parallel fetches T at its parent node, and shifts it to its center.

* 0
V'

- ---- -- - -- - ._ - 1 %TW9WVT19 w9 ILI V1 116A

CHAPTER 5. A PARALLEL ALGORITHM 49

(1) Tree embedding: allocate one processor for every tree node, starting at the
root.

allocate processor 0 for the root;
for i from 1 to n do begin

for j from 1 to 8i do begin
allocate processor 8(8 i- l - 1)/7 + j for the jth to the 0
leftmost node at level i of the tree.

end.
end.

(2) Find for each of nodes its near-field and interactive-field nodes:

for all nodes of the tree in parallel do begin
each node finds its near-field and interactive-field nodes

.4 and stores the addresses.
end.

(3) Insert N particles:

for i from I to N do begin
insert particle i into the tree.

end.

(4) Initial expansion at leaf nodes:

A. for all particles in parallel do begin
compute expansion 4 for the potential due to each of particles

relative to center of the leaf node the particle belongs to;
"P add together those 4's due to particles of the same leaf node

and form 41) for that leaf node.
end.

end. Figure 5.1: A parallel algorithm

* 0

% w

CHAPTER 5. A PARALLEL ALGORITHM 50

(5) Upward-path of tree walking:

for i from n down to 1 do begin
for all nodes at level i in parallel do begin

at each node
shift the D to the center of its parent node;
sum the resulted expansions of those who have the
same parent node and form 4D for that parent node.

end.
end.

(6) Downward-path of tree walking:

for i from 1 to n do begin
* for all nodes at level i in parallel do begin

at each node dl

(6a) shift 1P at dl's parent node to dl's center;
(6b) for node d2 in di's interactive-field do begin

-. shift 4 at d2 to dl's center;
end.
add the shifted 4Ps together.

add (6a) and (6b) to form T for node dl.
end.

end.

* (7) Final evaluation: compute near-field and far-field interactions for each of
particles.

for all particles in parallel do begin
at each particle

* (7a) evaluate at the particle position the IF of the leaf
node the particle belongs to;

(7b) compute directly potentials due to its near-field.
add (7a) and (7b) to form the desired potential.

end.

Figure 5.2: A parallel algorithm (con't)

N Nd-

%

CHAPTER 5. A PARALLEL ALGORITHM 51

This is done level by level, as in Step (5).
Finally, step (7) finishes the computation. Every particle evaluates in

parallel the corresponding T's at the particle position. This part of the
potential is due to the interaction with its far-field. Then every particle
computes in parallel the near-field interactions directly. The sum of the
far-field and near-field interactions is the desired potential at this particle
position.

We have seen from the above description that computation at a given
level of the tree in steps (4)-(7) takes one parallel step. Thus, step (4)
and step (7) each take constant time. Since the tree has depth of log N.
and computations at different levels of the tree have dependencies among
them, a complete propagation in step (5) and step (6) takes O(log N) time.
Therefore, the time complexity of the parallel algorithm, excluding the initial

-" set-up time for the tree and communication costs, is O(log N).
0 Let us now look at the memory usage in the computation. When we

retain in an expansion only the terms of spherical harmonics with degree less
than four, the total number of terms in an expansion is 20. As verified by the
experimental results from the sequential implementation, this guarantees in
average a four decimal-digit accuracy in potentials. Each of the coefficients
in an expansion is a 32-bit single precision floating-point number. We have
three different arrays of coefficients for each node of the tree in the computa-

tion. Thus expansions alone take about 2K bits of memory at each of nodes.
Storing the interactive-field and near-field takes another 4K bits of memory.

We also need some stack space for intermediate computation. Therefore,
about 10K bits of local memory at each node suffice for our purpose. In case
a machine has insufficient amount of local memory per processor, we can
remedy this by simulating a node of the tree with several processors. In such
a case, however, the cost of the communication overhead would be high.

5.5 Experimental Results

We have implemented the parallel algorithm on the Connection Machine.
The experimental results are summarized in Table 5.1. The running time

* •growth rate of the implementation is plotted in Figure 5.3, along with that
of the sequential implementation. The results experimentally verify that the
parallel implementation of the algorithm on the Connection Machine scales

V

opI0 r ,

CHAPTER 5. A PARALLEL ALGORITHM 52

Number of Running Time (sec.)
Particles Lisp Machine Connection Machine Speed-up

64 12.60 9.06 1.4
128 22.73 14.99 1.5
256 51.38 23.72 2.2
512 409.95 33.86 12

1024 620.92 51.78 12
2048 1050.65 60.65 17

4096 5221.29 71.83 73
8192 7203.37 79.63 90

16384 11411.68 94.17 121

Table 5.1: Experimental results on the Connection Machine. The running time
excludes paging time.

Running-tlme(LOG-E] 4N-"!!Paraltel Algorithm
.2e4 -*~Sequential Algorithm

_3.0e3

4.0e2-

-7.4

Number-of-partlcesLOG-1OJ. .

j.0e2 3.2e2 l.Oe3 ,3.2e3 *.0e4

0 Figure 5.3: Running time growth rate of the parallel algorithm, with that of the
sequential implementation.

CHAPTER 5. A PARALLEL ALGORITHM 53

logarithmically in the total number of particles in the simulation, even when

we take the communication into the consideration. We find that the parallel
V algorithm runs faster than the sequential algorithm, even on small exam-

ples. Compared with the sequential implementation, the parallel algorithm
exhibits a speed-up factor of about 10 for N=1,000 and a speed-up factor of
about 100 for N=10,0002 .

The complexity issue of the parallel algorithm, which is complicated by
the need for communication, will be discussed in more detail in the following
section.

5.6 Communication Patterns

We have discussed the complexity issue due to the floating-point compu-
tation in Section 5.4. Our experiments have shown that the floating-point
computation takes about 20% of the total running time and the interproces-
sor communication consumes a major portion of the rest3 .

A careful study at the communication patterns reveals that there are
two major kinds of communication going on in the computation. The first
kind of communication occurs between adjacent levels of the tree. We call
this vertical communication . The second kind of communication occurs

k% between node- and their interactive-fields and near-fields, and takes place
s,% within a single level of the tree. We call this lateral communication4 . The

experimental results show that, when the tree is averagely loaded, the lateral
communication constitutes about 20% of the total running time, and the
vertical communication accounts for another 25%. In the following sections,
we describe various optimizations we have made to reduce the communication
overhead.

2The parallel computation has about 200 million floating-point calculations in a test of
1,000 particles, and has about 1,600 million floating-point calculations in a test of 10,000

Aparticles.
3The results are obtained on the Connection Machine using the metering program

provided by Shawn Mclean.
4 Recall from Section 4.1.2 that a super-node is a node formed by grouping on

interactive-field nodes. Communicating with a super-node in the lateral communica-
tion involves two adjacent levels of the tree. Although this situation is similar to the
vertical communication, for the sake of simplicity we will consider it to be the lateral
communication.

,"'.

CHAPTER 5. A PARALLEL ALGORITHM 54

5.6.1 Reducing Communication Bottlenecks

The lateral communication required for computing interactions with near-
fields and interactive-fields is one of the most expensive parts of the parallel
computation. The cost of the lateral communication is due largely to mes-
sage collisions in which many processors try to access a single processor at
the same time. Since processor access on the Connection Machine is handled
in an exclusive reading and exclusive writing way, the time of a successful
message routing is proportional to the maximum number of message colli-
sions.

We tried to ease the communication bottleneck by reducing the number
of collisions in the lateral communication. We know that each node has 140
nodes in its interactive-field, and those nodes are represented as a list of
addresses. A close look shows that many processors often have the same
node as their interactive-field node at the same time, due to the way the

.. ., interactive-field list is constructed. Our algorithm, therefore, randomizes
the order in which one's interactive-field nodes nodes are accessed, in the
hope that two processors are less likely to access a single processor at the
same time. As a result, the randomization improves the performance of the
algorithm.

5.6.2 Localizing Communication

In computing the interaction with a node's interactive-field, we need to use
coefficients of expansions stored in an interactive-field node again and again.
Instead of fetching these every time we use them, we fetch them once and
store them on a temporary local stack. This can reduce the traffic by a factor

of 5, when computing expansions whose highest degree is three.

5.6.3 Combining and Delegating Messages

The Connection Machine router has fairly good performance when the net-
work is averagely loaded, but the routing time scales up as the number of
collisions in the routing process. Collisions are mostly due to concurrent read

0, or concurrent write to a single processor. To reduce the collisions, we can use
the scan operation, which does the segmented parallel prefix computation on

% "

V.n

*::: Si

if .

CHAPTER 5. A PARALLEL ALGORITHM 55

the Connection Machine5 . To resolve collision due to the concurrent read,
we first do an exclusive read, and then do a scan-copy operation. In case of I
the concurrent write combined with addition, we do a scan-+ and then an
exclusive write instead. If elements of a segment to be scanned are not in
consecutive processors, in order to apply the scan operator we have to first
project the elements to a new segment so that the new segment has elements
in consecutive processors. This extra projection pays off when there are more

than thirty processors in a segment.

.ell

Figure 5.4: Concurrent write

In our implementation of the algorithm, the final direct interactions with
a node's near-field often gives rise to 10-20 collisions. Therefore we use
a different method to reduce the collisions. The idea is to structure the
message routing through a tree that distributes the message collisions over
many intermediate nodes. This tree-like routing allows many of the collisions
to be handled in parallel, thereby reducing the total time delay due to the
collisions.

Consider an example in which 16 processors access a single processor for
concurrent write (Figure 5.4). Using the tree routing scheme outlined above,

,Given a binary associative operator , and a segment of sequence of elements
X1, X2,...-, X, the parallel prefix operation computes xi, X1 * X2, ... , X1 * X2 * ...Xn

in O(log(m)) time [HJ86]. In particular, there are scan-+ and scan-copy operations. The
* scan operation is very efficiently implemented on the Connection Machine. For simple

binary operations such as + and copy, it takes the same order of time as a routing cycle
does, which is the fundamental unit for time measurement, and is therefore considered to
take constant amount of time.

'4'

Z- V%~

CHAPTER 5. A PARALLEL ALGORITHM 56

4Al

4.

I
W %

%
Fiur .6 elgaig esaeNIO

.,,0

CHAPTER 5. A PARALLEL ALGORITHM 57
a .p.

we can use a two-level tree to combine every four of the writes together, and
then combine every four of the resulting writes (Figure 5.5). Even though
there are 20 total collisions in this tree, the time delay is only proportional
to 8 collisions because the nodes at the intermediate level of the tree handle
their collisions in parallel. This process is called message-combining. The
dual process, message-delegating, reduces collisions due to concurrent read,
as illustrated in Figure 5.6.

In general, suppose there are N collisions in total. Each stage of combin-
ing or delegating reduces the number of messages by a factor of m. Therefore
the number of stages is log, N. What is the optimal value of m such that
the function

Routing-time(m, N) = m log,.(N)

* is minimal? Using elementary calculus, we find that the optimal m = e,
where e is the base of the natural logarithm 2.718... Of course, we must
actually choose an integral value for m (2 or 3).

Message-combining and message-delegating have been very effective, and
in practice have given a factor of 2 improvement in speed.

2 5.7 Discussion

In this section, we discuss trade-offs we made in our parallel implementation,
and suggest alternatives to this implementation.

5.7.1 Grid Representation

We have used an address-induced scheme to construct the tree on the Con-
A nection Machine. This mapping scheme has the merit of simplicity. It also
___ saves memory space, by avoiding explicitly storing pointers in the tree. As

a result of this consecutive mapping scheme, oniy a subset of processors are
active at a time, since the computation proceeds level by level in the tree.

The alternative to the address-induced scheme is to use the Connection
Machine grid-like communication network called the NEWS grid. This struc-

* ture provides fast communication for local or highly structured communica-
tion patterns [Hil85]. Every processor is assigned a grid coordinate and can
be addressed by specifying this coordinate. The tree can be embedded in the

.X.r '1 r rW

*0 0

CHAPTER 5. A PARALLEL ALGORITHM 58

0 0,1,5 8 2,9 12

6 7 10 11

X A 43,13 16 4,17 20

5 6 7 8 9 1011121314151617181920 14 is 18 19

Figure 5.7: Superimposed mapping. Each square in the grid represents a pro-
cessor, and each number represents a node in the tree.

-. I I I
I I I

1 I

2 3 0

-A
5 8 9 12 I

- 5 6 7 8 9 1011121314151617181920
" 6 7 10 11

13 16 17 20

14 15 18 19

N:.w, Figure 5.8: Non-superimposed mapping. Edch square in the grid represents a
•, processor, and each number represents a node in the tree.

3.",I

• %

CHAPTER 5. A PARALLEL ALGORITHM 59

network in two different ways. One way is to superimpose levels of the tree
so that nodes at one level may share processors with those at other levels, as
illustrated in Figure 5.7. As a result, some processors require more memory
than others do. This scheme makes the processor utilization at most 100%.
However, since all processors on the Connection Machine must have the same

-w amount of local memory, the nonuniform memory requirement across proces-
sors wastes memory in some processors. The alternative is to unfold levels
of the tree and to assign to every node a processor, as in Figure 5.8. This
makes the memory utilization at most 100% but wastes some processors.

By using the NEWS grid, we can take advantage of the fast grid routing
for highly structured communication patterns, such as the communication
with interactive-fields discussed below.

* 5.7.2 Exploiting Regularities in Communication Pat-
terns

"- To further reduce the number of collisions discussed in Section 5.6.1, Alan
Ruttenberg has suggested a scheme to exploit the regularities in the commu-
nication patterns. We have not implemented this, so we do not know how
much it decreases the running time of the algorithm. To keep the discussion
simple, we present the scheme in two dimensions. The extension to three
dimensions is straightforward.

We classify squares of the spatial decomposition into four classes. Suppose
all the squares of smallest size of Figure 5.9 are at level 1. We first group
every four squares that share a common parent at level 1- 1. Then we classify
the four squares of a group as class 1, 2 ,3, and 4 respectively according to
the relative position of a square in the group, as labeled in the Figure 5.9.

We find that for every group there is spatial symmetry among the
. interactive-fields of its four squares. In Figure 5.10, square a' is an interactive-

field square of square a. A clockwise rotation of 90 degrees of the square
a with respect to the point 0 results in another square Y, which is an
interactive-field square of square b, and so on. As a result of the spatial
symmetry, the four squares a', Y, c', and d' are in different classes, as shown

0 in Figure 5.10. This symmetry property can be used to completely eliminate
message collisions in the communication with interactive-field squares. The
idea is as follows: each of four squares a, b, c, and d interacts with squares
a', 6', c", and d' respectively at the same time so that the communication

SV1 -P'Ii .5..
*mm 0

w "

CHAPTER 5. A PARALLEL ALGORITHM 600

1 2 1 2

',
, 4 3 4 3

1 2 1 2

4 4 3 ,

Figure 5.9: Classification of squares

- - - - -,

a)

3
0

- - -.- - b

1 2
a b

d c

1 .N.."

Figure 5.10: Symmetric communication pattern

00

SCHAPTER 5. A PARALLEL ALGORITHMW 61

r ,,,

r,. .,pattern is symmetric with respect to four squares; the same is true for all
.,. " .'other groups. Since the four squares a', bY, c, and d' are all in different classes
. and communication patterns of two different groups are identical except that
--] they are shifted from each other by some distance, none of the four squares
i:a', Yt, c, and d' will be fetched by moethan on qaeat atime. Thus,

-. .,,lateral communication can take place without collisions.
.,,..In Section 4.1.2, we discussed super nodes in the interactive-fields. Since

~the super nodes are one level higher in the decomposition tree than those
/ ordinary nodes in the interactive-field, interactions with a super node using
I ," ':the above scheme will give rise to collisions. However, the maximum number
. of interactions to a super node will not exceed 4 at a time. Therefore the

v-,-p

[" ,collisions can be avoided by spreading the data to be fetched at a super node
!.-. .. to its four children, and afterwards, access to the super node will be directed
~to the four children.pIn the above discussion we also ignored the boundary case. We can intro-

hduce dummy squares outside the boundaries so that boundary squares stillpreserve the symmetry property of interactive-fields.

.1.6

5.8 Conclusion
We have described the parallel implementation of the three-dimensional N-
hebody algorithm that runs on the Connection Machine in order O(log N) timerin this chapter. Compared with the previous N-body methods, our method

has a demonstrated advantage in simulating large number of particles. The
parallel implementation achieves tremendous speedup in running time and

ccmputes the forces and potentials to within any prespecifed tolerance up
to machine precision.

Combining the results of this chapter with the analytical results derived
in Chapter 3 and the experimental results of the sequential implementation in

4 Chapter 4, we have presented a complete analysis of the three-dimensional

N-body algorithm both theoretically and experimentally. Because of the
n thsuperior speed and accuracy of our algori d methat it will find
applications in astrophysics, plasma physics, fluid dynamics, and molecular
dynamics. Nevertheless, there are additional improvements that we believe
will enhance a the p rimnt rthe algorithm and, therefore, are worth fur-

hpther research effort.

[%[I, ~~ ~ Nbd loih ohtertclyadeprmnal.Bcueo h

V% %

CHAPTER 5. A PARALLEL ALGORITHM 62

We have observed in Section 5.6 that local computation-mainly floating-

point calculation at each processing element of the parallel implementation- .
takes only about 20% of total running time. The rest of the running time
is mostly spent on communication among processing elements. The results

indicate that the bottleneck is the interprocessor communication. Therefore,
an efficient implementation of the algorithm should explore the communica-
tion requirements of the algorithm. U

In Section 5.7 we described alternatives to the current parallel implemen-
tation to improve the performance of the algorithm. By using the NEWS
grid, we can exploit the localities of the algorithm and take advantage of the
fast grid routing. The use of the NEWS grid will also enable us to exploit the
regularities in the lateral communication of the algorithm. We expect that
the resulting implementation will ease the bottleneck of the interprocessor

: 2= communication.

% 0

pA

P:,0

% I

Ar

B ibliography 1

V.[And85] L. Andrews. Special Functions for Engineers and Applied Mathe- ".
d, maticians. Macmillan Publishing Company, New York, 1985.

[App85] A. Appel. An efficient program for many-body simulation. SIAM.
J. Sci. Star. Comput., 6(1), Jan. 1985. --q

[Arn78] V. Arnold. Mathematical Methods of Classical Mechanics.

Springer- Verlag, New York, 1978.

poi

-[BH86] J. Barnes and Piet Hut. A Hierarchical O(N log N) Force Calcu-
- . lation Algorithm. Technical Report, The Institute for Advanced

:! Study, Princeton, NJ 08540, 1986.

;:[CGR87] J. Carrier, L. Greengard, and V. Rokhlin. A Fast Adap- !

. tive Multipole Algorithm for Particle Simulations. Research Re-
~port YALEU/DCS/RR-496, Yale University, January 1987.

"[Chr84] D. Christman. Programming the Connection Machine. Master's
I t ,4°thesis, MIT, Dept. of Electrical Engineering and Computer Science,.Jan. 1984.

-!k:':.,.i.[Go159] MchetH Goldstein. 19Classical Mechanics. Addison-Wesley, Reading,

,: [GR86] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Sim-
b ulations. Research Report YALEU/DCS/RR-495, Yale University,

April 1986.

[Gre87] L. Greengard. The Rapid Evaluation of Potential Fields in Particle

Systems. PhD thesis, Yale University, April 1987.

. .:..63

[a

BIBLIOGRAPHY 64

[Her86] L. Hernquist. Performance Characteristics of Tree Codes. Tech-
nical Report, Dept. of Astronomy, University of California, Berke-
ley; and The Institute of Geophysics and Planetary Physics, LLNL,
Livermore, 1986.

[Hil851 D. Hillis. The Connection Machine. MIT Press, 1985.

[HJ86] D. Hillis and G. Steele Jr. Data parallel algorithms. Comm. of the
ACM, 29:1170-1183, 1986.

[Hob55] E. W. Hobson. The Theory of Spherical and Ellipsoidal Harmonics.
Chelsea Publishing Company, New York, 1955.

[knu8l] D. knuth. The Art of Computer Programming. Volume 2, Addison-
Wesley, 2nd edition, 1981.

[Kos64] N. S. Koshlyakov. Differential Equations of Mathematical Physics.
North-Holland Publishing Company, Amsterdam, 1964.

[Lec72] M. Lecar. Gravitational N-body Problem. D. Reidel Publishing
Company, Nordrecht-Holland, 1972.

[Pe86] W. Press and etc. Numerical Recipes. Cambridge University Press,
1986.

[Por85] D. Porter. A Study of Hierarchical Clustering of Galaxies in an Ex-

panding Universe. PhD thesis, University of California, Berkeley,
1985.

[Ref85] Reference Guide to Symbolics-Lisp. Symbolics, Inc., Cambridge, U
Massachusetts, June 1985.

[SP67] V. Szebehely and C. Peters. Complete solution of a general prob- 0
lem of three bodies. The Astronomical Journal, 72(7), Sept. 1967.

[Zha871 F. Zhao. An O(N) algorithm for three-dimensional N-body simu-
lations. Master's thesis proposal, MIT, Dept. of Electrical Engi-
neering and Computer Science, Jan. 1987. 01

4..Ni

